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Introduction
Breast cancer is the most commonly diagnosed cancer and the fifth 
leading cause of cancer-related mortality worldwide.1,2 It encom-
passes a diverse set of diseases, which has led to the development 
of various classification systems over time. Currently, immuno-
histochemistry for hormone receptors, including estrogen receptor 
(ER), progesterone receptor (PR), and human epidermal growth 

factor receptor 2 (HER2), is one of the most extensively employed 
approaches for classification. This system identifies four main sub-
types of breast cancer: luminal A, luminal B, HER2-amplified, and 
triple-negative.3–5 Luminal A and B subtypes are characterized by 
the presence of estrogen receptors (ER+), and together, they con-
stitute approximately 70% of all breast cancers, generally carrying 
a favorable prognosis. HER2-amplified (HER2+) breast cancer, 
which accounts for 15–20% of cases, is characterized by increased 
HER2 expression and the absence of ER. This subtype tends to 
behave more aggressively compared to the luminal subtypes.4 
Triple-negative (TN) breast cancer, which makes up about 15% 
of diagnoses, lacks ER, PR, and HER2 expression, exhibiting the 
most aggressive behavior with poor differentiation and high prolif-
eration rates. The terms TN and basal breast cancer are often used 
interchangeably due to significant similarities in their signatures; 
however, not all TN breast cancers are basal.6,7 Despite this broad 
classification based on receptor expression, histological categories 
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also account for rare subtypes, such as medullary breast cancer or 
invasive micropapillary carcinomas.8,9

Tumors exhibit a wide range of phenotypic and molecular char-
acteristics at both intertumor and intratumor levels. Heterogeneity, 
which has been extensively studied for its implications in diagnos-
tics and treatment selection, presents significant challenges, as dif-
ferent tumors and cells respond differently to the same therapeutic 
approach.10 Intertumor heterogeneity refers to variations between 
distinct tumors, whether from different or the same patient. Intra-
tumor heterogeneity, on the other hand, describes the mixture of 
cancer cell subpopulations within a single tumor, each with di-
verse genetic, transcriptomic, and phenotypic profiles, along with 
complex interactions with the tumor microenvironment (TME). 
In recent years, several studies have explored intratumor hetero-
geneity at the transcriptomic level in breast cancer using single-
cell RNA sequencing (scRNA-seq) data.11–15 These investigations 
have focused on identifying distinct cell clusters and their corre-
sponding gene expression signatures. However, while quantitative 
assessments of intratumor heterogeneity have been conducted in 
other cancer types,11,16 the field of breast cancer research lacks a 
quantitative exploration of this phenomenon. scRNA-seq provides 
detailed insights into the molecular landscape of breast cancer sub-
types, allowing for the characterization of variations in key biolog-
ical processes, copy number alterations (CNAs), and pluripotency. 
This approach also offers the potential to explore correlations be-
tween these features and breast cancer subtypes, as well as their 
potential links to tumor aggressiveness and therapeutic resistance. 
Thus, scRNA-seq studies enhance our understanding of cancer dy-
namics at the single-cell level, paving the way for precision oncol-
ogy strategies tailored to breast cancer subtypes.

In this study, we used quantitative measures on scRNA-seq 
data to analyze several hallmarks of cancer, focusing on can-
cer cells from the three primary breast cancer subtypes (ER+, 
HER2+, and TN). By quantifying these features and investigat-
ing their associations with the subtypes, our research aimed to 
deepen the understanding of the intricate relationships between 
these features and breast cancer subtypes. These measures in-
clude intratumor transcriptomic heterogeneity, CNAs, entropy, 
and key protein-protein interaction (PPIN) activity. We devel-
oped mathematical scores for each measure, as detailed in the 
Materials and Methods section.

Materials and methods

Dataset description
The dataset utilized in this study was obtained from scBrAtlas,13 
which is available in two forms: raw count matrices in the GEO 
database (series GSE161529) and preprocessed R objects on Fig-
share.17 For our analysis, we utilized the preprocessed R objects 
from Figshare. The scBrAtlas comprises scRNA-seq samples de-
rived from various human breast cancer states, including normal, 
preneoplastic, and cancerous conditions. This dataset includes 
approximately 430,000 individual cells from 69 surgical samples 
collected from 55 patients. Quality control metrics were applied 
to ensure the data’s reliability. The samples were filtered based on 
criteria such as library size, number of genes per cell, and percent-
age of mitochondrial content per cell. Detailed filtering procedures 
are outlined in Table S1. Following this process, approximately 
15% of the cells were excluded from each sample, leaving a total 
of 341,874 cells for further analysis. A comprehensive descrip-
tion of the preprocessing phase, along with the corresponding R 

code, is available in reference.18 Since the data had already been 
preprocessed, we verified this step and directly used the available 
preprocessed data.

Our primary focus was on cancer cells, so samples from male 
patients, healthy individuals, precancerous tissues, and cancer-
ous tissues associated with lymph nodes were excluded from the 
analysis. Table 1 provides a detailed description of the samples 
obtained from women with breast cancer, including patient age, 
cancer subtype, tumor size, grade, and number of cancer cells. 
Each sample contained a mixture of tumor cells, normal epithe-
lial cells, and cells from the TME, such as fibroblasts, endothelial 
cells, and immune cells. The original data source labeled the cells, 
distinguishing cancer cells from normal cells using inferCNV.19–21 
For our downstream analysis, we excluded all microenvironment 
cells, retaining only epithelial cells. Furthermore, we subset the 
cancer cells by filtering out normal epithelial cells using the origi-
nal labels. After cell filtering, we excluded samples containing 
fewer than 1,000 cancer cells. Based on these criteria, six ER+ 
samples (ER-0001, ER-0125, ER-0360, ER-0042, ER-0025, and 
ER-0163), five HER2+ samples (HER2-308, HER2-0337, HER2-
0031, HER2-0161, and HER2-0176), and six TN samples (TN-
0126, TN-0135, TN-B1-4031, TN-B1-0131, TN-B1-0554, and 
TN-B1-0177) were selected for further analysis. The sample labels 
provided by the data authors were preserved.

Data preprocessing and analysis were performed using R (ver-
sion 4.3.1) and the Seurat package (version 4.4.0). Samples were 
integrated separately across subtypes using the Seurat 4 pipe-
line.22,23 The ER+, HER2+, and TN breast cancer integrated data-
sets are shown in Figure 1a–c, with samples distinguished by the 
color of the cells.

Scores
To investigate potential links between tumor aggressiveness and 
specific biological features, we established several parameters to 
measure these features, including the level of CNAs, intratumor 
heterogeneity, entropy, and the activity of specific PPINs poten-
tially associated with tumor aggressiveness, such as epithelial to 
mesenchymal transition (EMT) and cell cycle regulation. In this 
section, we provide precise definitions of these measures and the 
rationale for their application.

CNA score
CNAs are changes in the number of gene copies within tumor cells, 
which can provide a selective advantage, leading to increased ex-
pression of certain genes and reduced expression of others. This 
reflects the extent and type of genomic instability unique to each 
tumor.24 CNAs have been linked to cancer progression and poor 
prognosis in breast cancer.25,26 In the context of breast cancer, 
CNA inference has primarily been focused on discriminating can-
cer cells from non-tumor cells rather than quantifying the extent of 
CNAs.11,13 One of our main interests involved exploring somatic 
CNAs. To deduce CNAs from scRNA-seq data, we employed the 
inferCNV R package (version 1.16.0),19–21 which detects somatic 
chromosomal-scale CNAs by assessing the relative gene expres-
sion levels of contiguous genes along the genome and comparing 
them to a reference set of “normal” cells. We applied inferCNV to 
the samples based on cancer subtypes, using a breast normal epi-
thelial sample from scBrAtlas (labeled as N0372) as our reference 
population, as done by the dataset creators.13 A sliding window 
of 100 contiguous genes was used. The pre-existing classification 
of cells into cancer and non-cancer categories, provided with the 
preprocessed dataset, was validated using the inferCNV profiles 
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obtained in alignment with the labeled data.
Several computational tools, including inferCNV, copyKAT,27 

and CaSpER,28 are commonly used to estimate CNAs in scRNA-
seq data. These tools are primarily designed to distinguish tumor 
cells from non-tumor cells but can also be valuable for quantifying 
CNA extent within individual cells. To achieve this, we defined a 
CNA level for each cell i based on the residual expression matrix 
generated by infer CNV:

( )2

1

1 1 .m
i ijj

CNA X
m =

= −∑
We denote the transposed residual expression matrix obtained 

from inferCNV by X, a matrix with n rows (cells) and m columns 
(genes). For simplicity, we avoid using the transposed symbol. 
This matrix serves as a surrogate for CNA in each gene j across 
every cell i. A value of 1 indicates neutrality, values exceeding 1 

Table 1.  Description of breast cancer samples

Sample ID Patient age Cancer subtype Size (mm) Grade Cancer cells after filtering

TN-0126* 64 TN 64 3 1,235

TN-0135* 61 TN 22 3 1,433

TN-106 65 TN 25 3 54

TN-0114-T2 84 TN 17 3 177

TN-B1-4031* 25 TN (BRCA1) 20 3 5,129

TN-B1-0131* 84 TN (BRCA1) 25 3 5,513

TN-B1-0554* 29 TN (BRCA1) 37 3 2,337

TN-B1-0177* 30 TN (BRCA1) 13 3 1,575

HER2-0308* 32 HER2+ 20 3 3,317

HER2-0337* 66 HER2+ 67 3 3,924

HER2-0031* 47 HER2+ 18 3 1,606

HER2-0069 71 HER2+ 27 3 196

HER2-0161* 80 HER2+ 45 3 4,124

HER2-0176* 60 HER2+ 20 3 4,682

ER-0319 58 PR+ 27 3 568

ER-0001* 58 ER+ 32 3 4,559

ER-0125* 45 ER+ 48 2 3,678

ER-0360* 70 ER+ 50 2 1,934

ER-0032 55 ER+ 90 3 417

ER-0042* 58 ER+ 18 2 2,899

ER-0025* 52 ER+ 23 2 4,499

ER-0151 49 ER+ 35 2 749

ER-0163* 45 ER+ 45 3 5,378

*Samples with more than 1,000 tumor cells after filtering were selected for analysis. BRCA1, breast cancer susceptibility gene 1 mutated; ER, estrogen receptor; HER2, human 
epidermal growth factor receptor 2; TN, triple-negative.

Fig. 1. UMAP visualization of cancer subtypes. Visualization in the UMAP space of samples corresponding to the subtypes ER+ (a), HER2+ (b), and TN (c). The 
samples were categorized by cancer subtype and integrated. Cells are color-coded according to the sample. ER, estrogen receptor; HER2, human epidermal 
growth factor receptor 2; TN, triple-negative; UMAP, Uniform Manifold Approximation and Projection for Dimension Reduction.
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indicate gains, and values below 1 denote losses. Hence, all ele-
ments of the matrix are standardized by subtracting 1. It is impor-
tant to highlight that since the terms are squared, the score reflects 
the magnitude of the CNA without distinguishing between gains 
and losses. This score indicates the mean squared dispersion of 
CNAs relative to the reference normal cells, and it is a variation 
of scores defined in previous works.29,30 To quantify the degree of 
CNA in a given sample, we averaged the scores across all the cells 
within the sample. This sample score is denoted as 〈CNA〉.

Transcriptomic heterogeneity
The standard approach for evaluating intratumor heterogeneity in 
cancer using scRNA-seq data involves performing clustering to 
identify distinct cell types or states.31,32 Subsequently, these clus-
ters are characterized using differential expression analysis and en-
richment analysis to identify gene markers for each cluster. While 
this method provides valuable insights into sample composition, 
it does not offer a score that measures the extent of heterogeneity 
at the transcriptomic level. To address this, we propose an alterna-
tive approach to assess transcriptomic heterogeneity, inspired by 
previous works.23

Our proposed approach involves assessing the variability of 
each gene from a scRNA-seq sample. Deriving variance from log-
normalized data does not account for the inherent mean-variance 
relationship present in scRNA-seq data. To address this, variance-
stabilizing methods are typically used.33,34 In our study, we em-
ployed the variance-stabilizing method from the Seurat package, 
specifically employing the FindVariableFeatures and HVFinfo 
functions, which provide an estimator of variance adjusted for the 
feature mean.22 This approach allows us to accurately assess gene 
variability while accounting for the underlying mean-variance re-
lationship in scRNA-seq data. To quantify this variability across 
the entire transcriptome, we define a sample expression variability 
score as:

1

1 ,m
jj

VAR VAR
m =

= ∑
where VARj represents the variance stabilized for gene j. 〈VAR〉 
denotes the mean variance across genes in a sample, serving as a 
metric to assess the degree of intratumor heterogeneity within a 
sample. A lower score indicates greater transcriptomic homogene-
ity, meaning that cells within a sample share more similar gene 

expression profiles. Conversely, higher values signify increased 
transcriptomic heterogeneity, suggesting greater diversity among 
the cells.

The activity of protein-protein interaction networks
In previous works, we developed a methodology to quantify the 
cell activity of a PPIN from scRNA-seq data.35,36 A PPIN associ-
ated with a specific set of genes can be constructed by extracting 
the interactions from the full Human PPIN that involve proteins 
encoded by the genes within the defined gene set x. A score that 
reflects the activity of a PPIN can be defined for each cell i as 
follows:

, 1

1 ,mx
i jk ij ikj k

ACT A Y Y
Ne =

= ∑
where Ajk is the upper triangular adjacency matrix, which char-
acterizes the connectivity between genes j and k in the network. 
Y is the transposed normalized expression matrix of dimensions 
n x m, N is the number of edges in the PPIN, and e is the average 
expression of all genes in cell i. To enhance clarity, each row of Y 
represents the expression profile of the i-th cell. A normalization 
factor of N e is introduced to account for differences in graph size 
and mean expression. This factor enables comparisons between 
samples and various PPINs. To quantify the overall activity levels 
of a PPIN associated with gene set x within a sample, we compute 
the average activity across all cells within the sample. This sample 
score will be denoted by 〈ACT〉x.

We computed the activity of the PPINs associated with six 
Homo sapiens gene sets as detailed in Table 2. Genes associat-
ed with the biological process “cell cycle” (GO:0007049) were 
sourced from the QuickGO database,37 and negative regulators of 
this process were excluded, as previously done.36 The remaining 
gene sets were retrieved from the Molecular Signatures Database 
(MSigDB).38,39 These include gene sets related to the positive 
regulation of EMT and four gene sets associated with a study that 
characterizes different breast cancer cell lines (basal, luminal, and 
mesenchymal).40 These gene sets provide comprehensive insights 
into distinct cellular behaviors across different breast cancer sub-
types. The activities of the PPINs associated with the cell cycle and 
EMT are denoted as ACTCC and ACTEMT, respectively. We refer to 
ACTLB-up, ACTLM-up, ACTLB-dn, and ACTLM-dn as the PPIN activities 
corresponding to the upregulated and downregulated differentially 

Table 2.  Details of gene sets used to compute the PPIN activity

Gene set Activity 
symbol Description Refer-

ence

GO:0007049 〈ACT〉CC Cell cycle: The progression of biochemical and morphological phases and events 
that occur in a cell during successive cell replication or nuclear replication events.

37

GO:0010718 〈ACT〉EMT Positive regulation of epithelial to mesenchymal transition 37

CHARAFE: breast cancer 
luminal vs basal dn

〈ACT〉LB-dn Characterization of breast cell lines: Luminal vs. Basal 
differentially expressed genes (downregulated)

38–40

CHARAFE: breast cancer 
luminal vs basal up

〈ACT〉LB-up Characterization of breast cell lines: Luminal vs. Basal 
differentially expressed genes (upregulated)

38–40

CHARAFE: breast cancer 
luminal vs mesenchymal dn

〈ACT〉LM-dn Characterization of breast cell lines: Luminal vs. Mesenchymal 
differentially expressed genes (downregulated).

38–40

CHARAFE: breast cancer 
luminal vs mesenchymal up

〈ACT〉LM-up Characterization of breast cell lines: Luminal vs. Mesenchymal 
differentially expressed genes (upregulated).

38–40

ACT, activity; CC, cell cycle; CHARAFE, gene-set name; dn, downregulated; EMT, epithelial to mesenchymal transition; GO, Gene Ontology; LB, Luminal vs. basal; LM, Luminal vs. 
mesenchymal; PPIN, protein-protein interaction network; up, upregulated.
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expressed genes between luminal vs. basal and luminal vs. mesen-
chymal breast cancer cell lines.

Entropy
We compute the Shannon entropy, a well-established informa-
tion theory metric used to measure the degree of uncertainty in 
a system configuration. Entropy is associated with a probability 
distribution pj. In the context of scRNA-seq data, this probability 
can be obtained by dividing the expression of gene j by the total 
expression of cell i, as follows:

,ij
ij

j ij

Z
p

Z
=
Σ

where Z represents the transposed count matrix.41–43 Thus, we cal-
culate the Shannon entropy for a specific cell i as follows:

1
(log ).m

i ij ijj
H p p

=
= −∑

To quantify the degree of entropy for a sample, we simply aver-
age the entropy across all cells comprising the sample. This sample 
score will be denoted by 〈H〉.

Traditionally linked to heterogeneity, in this context, entropy 
measures the heterogeneity of individual cells, not the sample’s 
intratumor heterogeneity. High H indicates a broad range of genes 
expressed simultaneously within a single cell, which is character-
istic of non-specialized cells such as stem or progenitor cells.41,44 
Hence, samples with higher 〈H〉 scores exhibit more undifferenti-
ated characteristics associated with cancer stemness. It has been 
reported that breast cancer aggressiveness and therapy resistance 
may be driven by breast cancer stem cells (CSCs).45–47 Notably, 
CSCs have been found to be enriched in TN tumors compared to 
non-TN breast cancers.48

In summary, we have established several scores from scRNA-
seq data that capture the levels of CNAs, entropy, and the activity 
of PPINs at the individual cell level. Overall cell score parameters 
at the sample level were derived by averaging across all cells within 
each sample. Hierarchical cluster analysis of the mean scores was 
performed with hclust from the stats R package (version 4.3.1).

Statistical analysis
To assess the statistical significance of the difference in the scores 
obtained from ER, HER2+, and TN subtypes, we used a custom 
script in Mathematica Wolfram software (version 13.0), which 
implements the Mann-Whitney test over samples belonging to 
cancer subtype pairs (https://reference.wolfram.com/language/
ref/MannWhitneyTest). This non-parametric statistical test was 
used to compare the medians of two independent groups. In our 
case, the groups consist of samples from the same subtype. We 
compared the sample scores, indicated by <…>, corresponding to 
eight measures. Since three types of tumors were studied and eight 
scores were considered, 24 comparisons were possible. Thus, the 
Benjamini-Hochberg procedure was applied to compute adjusted 
p-values (q-values) for the multiple comparison test.49 A q-value 
< 0.05 was considered statistically significant. The results of the 
statistical analysis are summarized in Table S2.

Results
We examined 17 individual samples obtained from breast can-
cer patients (refer to Table 1). These samples were categorized 
by cancer subtype and integrated (Fig. 1a–c). To explore CNAs, 
we conducted an inferCNV analysis for each sample. The result-
ing heatmaps of chromosomal copy gains or losses are shown in 

Figure 2a–c. Although the gain-deletion patterns do not exhibit 
strong synteny between the subtypes, some common characteris-
tics can be highlighted. chr1 exhibited gains at chr1q, which con-
tains several oncogenes such as NRAS, JUN, MYCL, TAL1, and 
BLYM, and losses at chr1p. Deletions in chr2 were observed in 
nearly all samples, irrespective of subtype. chr8q amplifications, 
encompassing the MYC proto-oncogene, were frequent across 
all subtypes. chr19 amplifications were seen in most samples but 
were more pronounced in ER+ and TN subtypes, aligning with 
previous findings.50 Across each subtype, common characteris-
tics among patients were noted. HER2+ samples exhibited con-
sistent amplifications at chr17, particularly at the chr17q12 band 
harboring the HER2 gene, and frequent deletions at chr13. Note 
that samples HER2-0308 and TN-B1-0131 exhibit CNA profiles 
that differ from their respective subtype patterns. To explore the 
heterogeneity of tumors, we analyzed each cancer subtype using 
the scores defined in the Methods section. The cell distributions of 
eight derived scores for each sample are shown in the violin plots 
of Figure 3. Additionally, Figure 4 visualizes the distribution of a 
subset of scores for individual cells within the integrated Uniform 
Manifold Approximation and Projection for Dimension Reduction 
(UMAP) space, specific to each of the three cancer subtypes. The 
distributions of the CNA score are illustrated in Figure 3a, reveal-
ing significantly lower values in ER+ samples compared to those 
observed in HER2+ and TN samples (Mann-Whitney test, q-val-
ues = 0.015 in both cases). ER+ tumors exhibited lower dispersion 
of the CNA score compared to HER2+/TN tumors. Furthermore, 
no distinct cell clusters based on this score are observed within the 
UMAP embedding (see Fig. 4). In contrast, as shown in Figure 3b 
and c, the scores 〈H〉 and 〈ACT〉CC show a gradual increase across 
ER+, HER2+, and TN samples. TN samples demonstrated higher 
〈ACT〉CC compared to the ER+ cancer subtype (Mann-Whitney 
test, q-values = 0.020). Furthermore, cell clusters exhibiting high 
ACTCC were observed across all cancer subtypes, as depicted in 
Figure 4. This is consistent with clusters of cycling MKI67+ tumor 
cells identified across all cancer subtypes in a previous study.13 On 
the other hand, the 〈ACT〉EMT score shows no significant differenc-
es among the cancer subtypes. Furthermore, the UMAP embedding 
does not reveal evidence of cell clusters exhibiting higher levels of 
activity in this PPIN (see Fig. S1). Additionally, we explored the 
activity of the PPINs associated with breast cancer cell lines (see 
Table 2). The distributions of ACTLM-up and ACTLM-dn in the UMAP 
space were similar to those of ACTLB-up and ACTLB-dn, respectively 
(see Figs. 4 and S1). As expected, TN samples displayed signifi-
cantly higher values of 〈ACT〉LB-dn and 〈ACT〉LM-dn compared to 
ER+ samples (Mann-Whitney test, q-values = 0.015 in both cases), 
as illustrated in Figure 3e, f, and Figure 4. Conversely, as seen in 
Figure 3g, h, and Figure 4, ER+ samples exhibited significantly 
higher 〈ACT〉LB-up and 〈ACT〉LM-up scores compared to TN samples 
(Mann-Whitney test, p-values = 0.015 in both cases). Similarly, 
the samples derived from the other luminal tumor (HER2+) also 
exhibited significantly higher 〈ACT〉LB-up and 〈ACT〉LM-up scores 
compared to TN samples (Mann-Whitney test, p-values = 0.020 
and 0.015, respectively). These results indicate that many tumor 
cells preserve the transcriptional landscape of the original lineage. 
Furthermore, ER+ and HER2+ samples display cell clusters with 
high ACTLB-up scores. In contrast, TN samples exhibit clusters with 
high ACTLB-dn scores (Fig. 4). Interestingly, cells with strong origi-
nal lineage features are co-localized in the UMAP space with cells 
exhibiting high entropy H. To assess the relationship between the 
scores, we computed the correlation matrix among sample averag-
es using the Pearson correlation coefficient, depicted in Figure 5a.
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At the sample level, the mean scores 〈CNA〉, 〈ACT〉CC, 〈H〉, 
〈ACT〉LB-dn, 〈ACT〉LM-dn, 〈ACT〉EMT, and 〈VAR〉 revealed positive 
correlations. Notably, the first five scores exhibited stronger corre-
lations among themselves, forming a cluster identified by perform-
ing hierarchical cluster analysis, as highlighted in Figure 5a. Spe-
cifically, 〈CNA〉, 〈H〉, and 〈ACT〉CC displayed the strongest Pearson 
correlation coefficients, ranging from 0.77 to 0.88. Moreover, both 
〈VAR〉 and 〈ACT〉EMT exhibited positive correlations with these 
scores. Conversely, 〈ACT〉LM-up and 〈ACT〉LB-u demonstrated neg-
ative correlations with all other scores, except for 〈VAR〉. These 
findings suggest that samples with higher CNA burden tend to 
display increased cycling activity and entropy. Additionally, these 
samples exhibit a basal and mesenchymal-like phenotype, poten-
tially indicative of the cancer cells’ ability to undergo EMT in 
more aggressive tumors. Intratumor transcriptomic heterogeneity, 
〈VAR〉, was also positively correlated with these scores. However, 
surprisingly, it also showed a positive correlation with 〈ACT〉LM-dn 
and 〈ACT〉LB-dn, albeit with lower values.

Analysis of the nine sample score distributions across breast 
cancer subtypes revealed distinct patterns. 〈CNA〉 exhibited great-
er heterogeneity between the TN samples compared to the ER+ 
and HER2+ samples. Additionally, 〈CNA〉 levels were higher in 
HER2+ samples compared to ER+ samples, as shown in Figure 5b. 

Furthermore, the scores 〈ACT〉CC, 〈H〉, 〈ACT〉EMT, 〈ACT〉LB-dn and 
〈ACT〉LM-dn were highest in TN samples, followed by intermediate 
levels in HER2+ samples, and lowest in ER+ samples, as visual-
ized in Figure 5c–g. In Figure 5h and i, the opposite distribution 
order is observed. TN corresponds to a basal/mesenchymal phe-
notype, leading to lower activity related to luminal cancer types, 
while ER+ and HER2+ samples exhibit higher activity in these 
PPINs. However, it is important to note that these kernel density 
estimations are based on a limited number of samples, which may 
lead to estimated distributions with peaks that may not accurately 
represent the true underlying distributions. These peaks corre-
spond to samples that deviate from the general behavior, as we 
will discuss later.

In terms of sample variability, ER+ samples showed the most 
left-skewed distribution, HER2+ samples showed the most right-
skewed distribution, and the TN distribution fell between them (see 
Fig. 5j). One possible explanation for this finding is that HER2+ 
tumors present both luminal and basal features,51 and therefore ex-
hibit heterogeneous transcriptomic patterns. This observation sug-
gests that even though variability correlates positively with other 
scores (albeit to a lesser extent), this score does not necessarily 
indicate more aggressive tumors.

For a detailed inspection, Figure 6 presents scatter plots of 

Fig. 2. Heatmap plots displaying the CNA. Average changes in the number of gene copies in tumor cells, obtained with inferCNV, for the three sample 
subtypes: ER+ (a), HER2+ (b), and TN (c). The genes are sorted by genome location (vertical axis) and grouped by chromosomes, while columns represent 
individual cells grouped by sample and color-coded according to the respective sample. Blue corresponds to regions with copy number loss, while red cor-
responds to regions with copy number gain. The histograms at the top of each panel depict the distribution of expression modification in tumor cells relative 
to reference cells. CNA, copy number alteration; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; TN, triple-negative.
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selected sample parameters to observe their relationships, distin-
guishing them by cancer subtype and labeling the samples. The 
positive correlation between the scores, as reported in the correla-
tion matrix (Fig. 5a), can be verified by these scatter plots. Moreo-
ver, certain general trends are observable. ER+ samples tend to 
cluster in the lower regions of the scatter plots, indicating lower 
scores. In contrast, HER2+ and TN samples are more difficult to 
differentiate from each other, yet there is a tendency for TN sam-
ples to cluster at higher score levels compared to HER2+ samples.

Examining individual samples reveals certain exceptions. For 
instance, among the TN samples, TN-B1-0131 shows low scores 
across all parameters except for 〈VAR〉, resembling profiles found 
in ER+ samples. Further scrutiny of the metadata reveals that the 
TN-B1-0131 sample corresponds to an 84-year-old patient (see 
Table 1), making it 20 years older than the next oldest TN sample 
when sorted by age. Additionally, it exhibits an age gap of more 
than 30 years compared to the average age of the other TN sam-
ples, which is 42. A similar observation in the opposite direction 
can be made for HER2-0308. This particular sample shows nota-
bly higher scores compared to the others in the same cancer sub-
type, except for 〈CNA〉. The donor for this sample is 32 years old 
(Table 1), which is more than 30 years younger than the mean age 
of HER2+ samples.52 The exceptional score values observed may 
be linked to age-dependent tumor aggressiveness. The residual ex-
pression matrices shown in Figure 2 provide complementary infor-
mation regarding CNA. In contrast to other TN samples, TN-B1-
0131 exhibited a low 〈CNA〉 value. This is reflected in its residual 
expression matrix shown in Figure 2c, which displays a pattern 
with fewer chromosomal gains and losses compared to the other 
TN samples. While HER2-0308 displayed intermediate levels of 
the 〈CNA〉 score within the HER2+ group (Fig. 2b), its residual 

expression matrix deviated from other HER2+ samples. Notably, 
it exhibited marked amplifications in chr6 and chr17, alongside 
deletions in chr14.

Discussion
This study presents a quantitative approach to assess key features 
related to cancer, specifically focusing on the three most prevalent 
subtypes of breast cancer: ER+, HER2+, and TN. Using scRNA-
seq data obtained from human breast cancer samples, we conduct a 
comprehensive analysis of various cellular characteristics, includ-
ing CNAs, entropy, and PPIN activity, which are linked to specific 
biological processes (e.g., EMT, cell cycle, luminal, mesenchymal, 
and basal breast cell lines). Additionally, we introduce a score that 
quantifies intratumoral transcriptomic heterogeneity. The novelty 
of this study lies in the quantitative assessment of these features—
a comprehensive approach that has not been explored in the breast 
cancer single-cell transcriptomics field.

Our investigation at the single-cell level reveals intriguing sig-
natures. The PPIN activity associated with the cell cycle and en-
tropy demonstrates varying degrees of activity across the breast 
cancer subtypes: ER+, HER2+, and TN, in ascending order. No-
tably, clusters of cells displaying heightened mitotic activity are 
observed in all subtypes, with TN samples exhibiting a higher pro-
portion of mitotic cells, consistent with previous studies.13,18

The study also highlights distinct CNA distribution patterns 
between ER+ and HER2+/TN tumors. 〈CNA〉 was significantly 
higher in HER2+ and TN samples compared to ER+ samples, but 
no significant difference was observed between HER2+ and TN 
tumors. Specifically, gains at chr1q have been reported in approxi-

Fig. 3. Violin plots of the scores. Score distribution across the cell population of each sample for CNA (a), ACTCC (b), H (c), ACTEMT (d), ACTLB-dn (e), ACTLM-dn 
(f), ACTLB-up (g), and ACTLM-up (h). The white horizontal lines represent the mean value of the corresponding score for each sample. Yellow, blue, and red 
labels correspond to ER+, HER2+, and TN subtypes, respectively. The mean values obtained for samples of each subtype were compared between subtypes, 
with significant differences indicated by black lines. The resulting p- and q-values are listed in Table S2. ACT, activity; CNA, copy number alteration; dn, 
downregulated; EMT, epithelial to mesenchymal transition; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; LB, Luminal vs. basal; 
LM, Luminal vs. mesenchymal; TN, triple-negative; up, upregulated.
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mately 60% of ER+ patients,53 while amplifications at chr8q and 
chr19 confirm their well-documented role in breast cancer.54–56 
Despite identifying these recurrent CNAs across subtypes, signifi-

cant heterogeneity within each subtype was observed,54 reflecting 
the complex and diverse nature of these malignancies. Further-
more, the activity profiles associated with basal and luminal cell 

Fig. 5. Scores relationships. (a) Pearson correlation coefficient between the nine sample scores. Red indicates a positive correlation, blue indicates a negative 
correlation, and white indicates no correlation between the scores. The black squares identify clusters of five highly correlated scores. (b-j) Distribution estima-
tion of sample scores, color-coded according to cancer subtypes: ER+, HER2+, and TN. ACT, activity; CNA, copy number alteration; ER, estrogen receptor; H, en-
tropy; HER2, human epidermal growth factor receptor 2; LB, Luminal vs. basal; LM, Luminal vs. mesenchymal; TN, triple-negative; VAR, transcriptomic variability.

Fig. 4. Scores across cell populations of the three cancer subtypes. Visualization of the scores CNA, ACTCC, H, ACTLB-dn, and ACTLB-up in the UMAP space. Each 
point represents a cell, with color indicating the magnitude of the score in that cell. Samples were separated by cancer subtype: ER+ (top), HER2+ (middle), 
and TN (bottom) and then integrated for better visualization. Plots corresponding to the same score are organized in columns. ACT, activity; CNA, copy num-
ber alteration; dn, downregulated; ER, estrogen receptor; H, entropy; HER2, human epidermal growth factor receptor 2; LB, Luminal vs. basal; LM, Luminal 
vs. mesenchymal; TN, triple-negative; UAMP, Uniform Manifold Approximation and Projection for Dimension Reduction; up, upregulated.

https://doi.org/10.14218/GE.2024.00071


DOI: 10.14218/GE.2024.00071  |  Volume 24 Issue 3, September 2025 167

Senra D. et al: Unraveling tumor heterogeneity Gene Expr

lines in our study differentiate basal and luminal tumors.
We did not observe cell groups with elevated ACTEMT in any 

subtype, in agreement with prior studies.13 This may be due to the 
reported scarcity of cells undergoing EMT, which could be masked 
within the large pool of cells analyzed.57 Additionally, low expres-
sion levels of EMT-related genes (e.g., ZEB1, ZEB2, SNAIL) 
may suffice to trigger EMT, even without a substantial increase 
in ACTEMT. Another factor could be the absence of metastasis in 
the studied samples, which would result in minimal EMT activity.

In analyzing the mean scores of the samples, we identified a 
positive correlation among 〈CNA〉, 〈ACT〉CC, 〈H〉, 〈ACT〉LB-dn, and 
〈ACT〉LM-dn indicating that samples exhibiting basal characteristics 
present higher levels of these parameters. Moreover, these param-
eters show increasing levels in ER+, HER2+, and TN tumors (in 
ascending order), which aligns with the malignancy levels across 
cancer subtypes. Higher scores correspond to a more unfavorable 
prognosis. While various classifications of breast cancer subtypes 
exist, there is a consensus in this study that the order from better to 
worse prognosis is ER+, HER2+, and TN.51,58–60 While 〈ACT〉EMT 
correlated positively with the previous scores, its correlation co-
efficient was lower than among them. An interesting exception 
emerged regarding the correlation with 〈VAR〉, a parameter quan-
tifying transcriptomic heterogeneity within each sample, where 

HER2+ tumors showed the higher values, followed by TN and 
ER+ tumors. This is likely due to the fact that HER2+ tumors of-
ten exhibit both luminal and basal properties, resulting in a more 
diverse range of transcriptomic profiles. In various cancer types, 
including breast cancer, a distinct subset of cells known as CSCs 
has been identified. These cells comprise only a small fraction (ap-
proximately 0.1–1%) of the total tumor cell population and are as-
sociated with poor patient prognosis.47,61,62 However, these cells 
may not significantly impact the transcriptomic variability score 
due to their low numerical abundance.

Our quantitative measures also uncovered distinct behavior in 
samples HER2-0308 and TN-B1-0131 compared to others within 
their respective subtypes. This difference may be attributed to pa-
tient age discrepancies relative to the age range of the other sam-
ples in each subtype. Numerous studies have reported more ag-
gressive tumor biology, increased recurrence risk, treatment failure 
rates, and higher mortality in younger patients.52,63–65

This study has several limitations that could impact the accura-
cy of our conclusions. First, the relatively small sample size in the 
available database may limit the generalizability of our findings, 
especially given the high variability among samples. Although 
scRNA-seq is a powerful tool for studying tissue heterogeneity, 
larger breast cancer datasets will become available as this tech-

Fig. 6. Sample scores scatter plots. Scatter plots illustrating several relationships among sample scores that support the positive correlation. Each data point 
represents a sample, color-coded based on the cancer subtype, with labels included alongside the data points. ACT, activity; CNA, copy number alteration; 
ER, estrogen receptor; H, entropy; HER2, human epidermal growth factor receptor 2; TN, triple-negative; VAR, transcriptomic variability.
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nology advances, enabling more comprehensive analyses. Second, 
PPIN activity assessment relies on existing interaction databases, 
which may be incomplete and fail to capture all relevant tumor 
biology interactions. This limitation could be addressed in the fu-
ture by employing functional assays to validate the roles of spe-
cific genes in the biological processes of interest. Finally, the TME 
exerts selective pressures (e.g., hypoxia, nutrient deprivation, im-
mune surveillance) that drive the evolution of tumor cell subpopu-
lations.66 As the TME is spatially heterogeneous, these selective 
pressures create distinct niches that can select tumor cells with 
specific adaptations, leading to regional heterogeneity.67 Addition-
ally, components of the TME, such as inflammatory cytokines and 
reactive oxygen species, can promote genomic instability in tumor 
cells, increasing mutation rates and contributing to the generation 
of diverse subclones.68 Understanding the complex interplay be-
tween tumor cells and the TME is essential for a comprehensive 
view of tumor cell heterogeneity. A survey of the microenviron-
ment (stromal/immune cells) in different subtypes from the same 
dataset was conducted in a previous study.13 However, our focus 
is on cancer cells, and a detailed analysis of TME interactions lies 
beyond the scope of this study.

Conclusions
This study addresses a gap in the current understanding of breast 
cancer heterogeneity by presenting a novel quantitative approach 
that offers deeper insight into tumor biology, overcoming some limi-
tations of traditional marker-based methods. Using single-cell RNA 
sequencing data, this work introduces a novel scoring framework 
that quantifies key cancer traits, such as CNAs, transcriptomic het-
erogeneity, entropy and activities of PPIN associated with biological 
processes relevant to cancer biology. The proposed methodology al-
lows exploring these features at the individual cell level, revealing 
intra- and inter- tumor heterogeneity that may be relevant for tumor 
evolution and treatment response. We applied this methodology to 
human scRNA-seq datasets from ER+, HER2+, TN breast cancer 
subtypes. Our analysis revealed significant differences in several 
scores across the subtypes. Overall, this approach enables a better 
understanding of breast cancer heterogeneity, with the potential to 
identify novel therapeutic targets and strategies.
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